Final Report
Yangchen Zhao and Junming Chen
Github Link

As mentioned in the milestone, our plan was to add three features to our current renderer:
Normal Mapping, Mipmapping, and Environment Mapping. After days of work, we have
perfectly finished implementing all three features and rendered amazing and realistic scenes.

1. Normal Mapping
Partial derivatives
Path differentials
A simple way inspired from RenderMan
Shading normal
Experiments & Result
2. Mipmapping
Idea
Partial derivatives
Image pyramid
Bilinear lookup between texels
Trilinear lookup between level
Texture
Experiments & Result
3. Environment Map
Idea
Infinite area light
Distribution
Distribution1D
Distribution2D
PDF, light Direction, and Emission
PDF
Direction
Emission(based on Mipmap)
Experiments & Result
4.Final Result

1. Normal Mapping

For Normal Mapping, we initially follow the instructions on the PBRT Normal Mapping part.
However, the code structure in the PBRT is quite different from our current code. This caused
some froubles when we fried to add Normal Mapping to our renderer(we also fried to use the
method in CSE272 hwO before the checkpoint, but we found that Normal Mapping is more
advanced and easier to implement. We then turned to use Normal Mapping with the methods
in lecture 9.

We need fo compute differentials. We maintain two numbers for a ray differential: the radius
and the spread of the ray.

https://github.com/Leoooo333/Torrey
af://n7

Here, the radius is approximately length(dp/dw);length(dp/dy) and the spread is approximately

length(dd/dz)+length(
2

dd/dy) . We now use the value of radius to approximate the value of dp/dy

and the value of dp/dx.

Partial derivatives

ou Ju
. . 9r Oy

To decide how many texels a ray will cover, we need to calculate the ai aZ . There are
oz Oy

many version of differential methods to implement it.

Path differentials

We can use Path differentials in PBR-Book, where we emit 2 extra auxiliary rays to estimate the
Partial derivative.

But that is absolutely expensive to compute. The rays need bounce between object, and thus
we will have rays at the number of 3%°%"¢¢ \which will increase the cost exponentially. We have
tried it but it seems not practical for our torrey renderer based on CPU.

A simple way inspired from RenderMan

Here is a conservative heuristic way mentioned in CSE 272, that we can approximate the partial
derivatives based on the ray's distance and the spread coefficient of a surface.

radius + t * spread

radius

Here the idea is approximate the ray as a cone. We use radius to approximate both % and %
Y &

, and use spread to approximate both g—z and %. When a ray bounce between objects, we

update the radius like this:

Vector3 hit_point_original = HitPointOriginal(ray, NearstObj);

Vector3 hit_point = ray.Origin + ray.distance * ray.Direction;
ray.radius += ray.spread * ray.distance;

af://n225
af://n227
af://n231

ou ou

0 0
But what we actually want to get 82 ou |- Let's apply chain rules on it. P is actually the hit
9 By
point on the object’s surface.
Ou Ou Op
0xr Op Oz

Since we now have % ~ ray. radius, we just need to figure out the Jacobin between (u, v)
and points. For the triangle primitive, we calculate it by barycentric coordinate.

Here we use the method in CSE272 and the idea in the CSE168 lecture:

From barycentric coordinates to UV s |, 2

vy
o ab; ou dv
iy quiz: given —, what are — and —
Suv 2 ox ox dx
LEVl

V= (I _h] _hz}lf'n+b11}] +bzpj
Noticing that here the s == bl and t == b2 .

Vector3 barycentric = Vector3(1 - bl - b2, bl,

if(triangle.mesh->uvs.size() != 0)

{

Vector2 uv_0 triangle.mesh->uvs[triangle.mesh->indices[triangle.index]
[0]]1;

Vector2 uv_1 = triangle.mesh->uvs[triangle.mesh->indices[triangle.index]
[1]];

Vector2 uv_2 triangle.mesh->uvs[triangle.mesh->indices[triangle.index]

[2]];

Vector2 uv_coor = { dot(Vector3(uv_0.x,uv_1.Xx, uv_2.Xx),

barycentric),
dot(Vector3(uv_0.y,uv_1.y,uv_2.y),
barycentric)};

Vector2 duvds = uv_2 - uv_0;

Vector2 duvdt = uv_2 - uv_1;

Real det = duvds[0] * duvdt[1l] - duvdt[0] * duvds[1];
Real dsdu duvdt[1] / det;

Real dtdu —duvds[1] / det;

Real dsdv duvdt[0] / det;

Real dtdv = -duvds[0] / det;

Vector3 dpds = p3 - pl;

Vector3 dpdt = p3 - p2;

dpdu = dpds * dsdu + dpdt * dtdu;

dpdv = dpds * dsdv + dpdt * dtdv;

u_coor uv_coor.x;
vV_coor uv_coor.y;

It is very easy fo apply it to sphere, since (6, ¢) = (7v, 27u)

object = std::make_shared<Shape>(Shape{ sphere });

distance = nearest_t;

Vector3 point_original = (origin + distance * direction) / fabs(sphere.radius);
Real theta = acos(point_original.y);

Real phi = atan2(-point_original.z, point_original.x) + c_PI;

u_coor phi / (2 * c_PI);
V_coor theta / c_PI;

dpdu = sphere.radius * Vector3(-sin(v_coor) * sin(u_coor),
sin(v_coor) * cos(u_coor),
0.) x 2. x c_PI;

dpdv = sphere.radius * Vector3(cos(v_coor) * cos(u_coor),
cos(v_coor) * sin(u_coor),
-sin(u_coor));

After getting the values of dpdu and dpdv, we now need to find the value of dudx, dudy, dvdx
and dvdy. As mentioned above, we used the value of “radius” to approximate the value of
dp/dy and the value of dp/dx. In this case, we can get the value of dudx, dudy, dvdx and dvdy
by radius/dpdv and radius/dpdu. After getting these values, we can now calculate the value of
du and dv and then get the shift point p’

Ou Ou
0 0 .
Now, we can calculate * Y1 this way:
Ov Ou
ox Jy
Ou Op 0p
ox Oz’ Ou

These are all we have done to implement the Normal Mapping. We have gotten all the values
we need to calculate the shift point p.

Shading normal

Applying normal maps

n_local
n_world

2 * normal_map(u, v) - 1
n * n_local.z +

t * n_local.x +

b * n_local.y

new_normal = normalize(n_world)

new_tangent = normalize(
dpdu - new_normal *
dot(new_normal, dpdu))
new_bitangent =
cross(new_normal, new_tangent)

We first build a new struct called ParsedNormalMap .

af://n252

using ParsedColor = std::variant<Vector3 , ParsedImageTexture>;

using ParsedNormalMap = ParsedImageTexture;

After that, for each material , we added a new parameter normal_map

using Color = std::variant<Vector3, Texture>;
using NormalMap = Texture;
struct Diffuse {

Color reflectance;

NormalMap normal_map;

We also changed the Parse_scene.cpp file fo read the Normal Map Texture

std::tuple<std::string , ParsedMaterial> parse_bsdf(
std: :map<std::string , ParsedColor>& texture_map,

ParsedNormalMap normal_map = { fs::path("none") };

else 1if (‘type == “d—iffusen) {
ParsedColor reflectance(Vector3{ 0.5, 0.5, 0.5 });

for (auto child : node.children()) {
std::string name = child.attribute("name").value();
if (name == "reflectance") {
reflectance = parse_color(

child, texture_map, default_map);

N
J

else if (name == "normal_map")

S
1

normal_map = std::get<ParsedImageTexture>(parse_texture(child,

default_map));

}

return std::make_tuple(id, ParsedDiffuse{ reflectance ,normal_map });

For the Normal Mapping function, we first constructed the tangent space for meshes. Here n is
just the shading normal. In order to construct the T frame, we first calculate the derivative of
the point P with respect to the u to get the direction, which is the UV coordinate. After that, we
remove the part that is not orthogonal o n to get t, in which we subtract the n * the projection
of the n vector on dpdu from dpdu. Then we use the cross product to compute a vector b that
is orthogonal to both n and 1.

After we constructed the tangent space for meshes, we now need to actually get the normal
which we should use in Normal Mapping. We first get the normal_map(u,v) and scale it then
minus by one to get the local normal. After that, we convert the local normal to the space
defined by the n,t, and b coordinate basis by multiplying the vectors n,t, and b.

Vector3 shading_normal = normal_p;

Vector3 t = normalize(ray.dpdu - shading_normal x* dot(shading_normal,
ray.dpdu)) ;

Vector3 b = cross(shading_normal, t);

NormalMap normal_map = std::visit([&] (auto& map) {return map.normal_map; },
material) ;

if (normal_map.width == 1 && normal_map.height == 1)

return Vector4{ shading_normal, 0. };
Vector3 local_coor = 2. * normal_map.GetColor(ray.u_coor, ray.v_coor, 0) -

Vector3 normal_original = local_coor.z x shading_normal +
local_coor.x * t +
local_coor.y * b;

After we get the normal, we use this normal when we need to compute the color(we use
normal only when we need to calculate the color)

Vector3 scatter_direction = m_Sampler->SampleDirection(material, ray,
normal_transformed, m_Vars, scene, m_BVH, rng, &is_reflect, &is_refract);

Real pdf = m_Sampler->GetPDF(material, ray, normal_transformed, m_Vars,
scatter_direction, scene, m_BVH, rng, is_reflect, is_refract);

Vector3 brdf = m_Sampler->GetBRDF (material, ray, normal_shading, m_Vars,
scatter_direction, scene, m_BVH, rng, is_reflect, is_refract);

Experiments & Result

Without normal map |

with normal map K2

1.3

this

af://n38

2. Mipmapping
Idea

Mipmapping is a kind of prefiltering, which is used to antialiaing on texture. The core of the
mimapping is the relation between texture coordinate (u,v) and film coordinate (z, y). When a
ray hit a object far away, it should cover a larger area of texels, since there the value of M is

higher, which means (u, v) is more susceptible fo the change of (z, y).

Partial derivatives

The differential method in Mipmap is the same with what we have talked in the Normal Map
section.

Ou Ou
0 0 .
Now, we can calculate . Y| this way:
G Ou
oz oy
Ou Op 0p
ox Oz’ Ou

So here we can infer the footprint of a ray by:
footprint = cwemge(H || H H || || H H)

Op
:avemge(H%H,Ha—yH)/avemge(H 2, H H)

Texture& texture = std::get<Texture>(m_color

Real dp_duv = (length(ray.dpdu length(ray.dpdv

Real footprint = ray.radius / dp_duv
Real level = texture.GetlLevel(footprint
surface_color = texture.GetColor(ray.u_coor, ray.v_coor, level

af://n39
af://n40
af://n43

Image pyramid

Mipmapping contains a image pyramid, where we prefilter the texture with different levles. It si
helpful to reduce the cost, since we actually implement a more time efficient way on searching.
Here we just use box filter to build a Mipmap.

struct MipMap {
std::vector<std: :shared_ptr<Image<T>>> pyramid;
MipMap() = default;
MipMap (Image<T>& img)
{
pyramid.push_back(std: :make_shared<Image<T>>(img));
int max_lavel = min((int)log2(Real(max(img.width, img.height))) + 1,
MAX_MIP_DEPTH) ;
for (int i = 0; i < max_lavel; i++)
{
Image<T>& last_img = *pyramid[pyramid.size()-1];
int new_w = max(last_img.width / 2, 1);
int new_h = max(last_img.height / 2, 1);
Image<T> new_img(new_w, new_h);
for (int y = 0; y < new_img.height; y++)
{
for (int x = 0; x < new_img.width; x++)
{
new_img(x, y) = (last_img(2 * x, 2 x y) +
last_img(2 * x + 1, 2 x y) +
last_img(2 * x + 1, 2 xy + 1) +
last_img(2 * x, 2 x y + 1)) / Real(4);

}

pyramid.push_back(std: :make_shared<Image<T>>(new_img)) ;

Bilinear lookup between texels

Given an integer Tlevel , we will look up corresponding fexture in the pyramid. And we adopt
bilinear interpolation between the four adjacent texels.

T Lookup(Real u, Real v, Real uscale, Real vscale, Real uoffset, Real voffset,
int level)
{

Image<T>& current_img = xpyramid[level];

Real current_img.width * modulo(uscale * u + uoffset, 1.);
Real current_img.height * modulo(vscale * v + voffset, 1.);
auto 1 static_cast<int>(x);
auto j static_cast<int>(y);

if (i >= current_img.width) 1 current_img.width - 1;
if (j >= current_img.height) j current_img.height - 1;

auto pixel_00 current_img(i, j);

auto pixel_01 current_img(i, modulo(j + 1, current_img.height));

auto pixel_10 current_img(modulo(i + 1, current_img.width), j);

auto pixel_11 current_img(modulo(i + 1, current_img.width), modulo(j + 1,
current_img.height));

af://n52
af://n55

auto pixel = pixel_00 * ((Real)i + 1. - x) * ((Real)j
+ pixel_10 * (x - (Real)i) * ((Real)j + 1. - vy)
+ pixel_01 * ((Real)i + 1. - x) * (y - (Real)j)
+ pixel_11 * (x - (Real)i) * (y - (Real)j);
return pixel;

Trilinear lookup between level

Here we just interpolate the 1level , where we get a weighted average of two level's textures
bilinear interpolation result.

T Lookup(Real u, Real v, Real uscale, Real vscale, Real uoffset, Real voffset,
Real level)

{
if (level <= 0)
{
return Lookup(u, v, uscale, vscale, uoffset, voffset, 0);
}
else if (level < Real(pyramid.size() - 1))
{
int low_level = max((int)level, 0);
int high_level = min(low_level + 1, (int)pyramid.size() - 1);
Real portion = level - low_level;
return Lookup(u, v, uscale, vscale, uoffset, voffset, low_level) * (1 -
portion) +
Lookup(u, v, uscale, vscale, uoffset, voffset, high_level) x*
portion;
}
else
{
return Lookup(u, v, uscale, vscale, uoffset, voffset,
(int)pyramid.size() - 1);
}
k;

Texture

We include the Mipmap within Texture . So actually every Texture will have a unique
Mipmap, which is initiated at the begin of construction function. When we hit a object with
texture, we look up it's mipmap to get the surface color. And calculate the level by footprint.

struct Texture {
ParsedImageTexture parsedImageTexture;
MipMap<Vector3> mipMap;
int width = 0, height = 0;

Vector3 GetColor(Real u, Real v, Real level)
{

return mipMap.Lookup(u, v, parsedImageTexture.uscale,
parsedImageTexture.vscale,

parsedImageTexture.uoffset, parsedImageTexture.voffset, level);

}

Real GetLevel(Real footprint)
{
Real scaled_footprint = footprint * max(width, height) =*
max (parsedImageTexture.uscale, parsedImageTexture.vscale);
Real level = log2(max(scaled_footprint, (Real)le-9f));
return level;

af://n58
af://n61

Experiments & Result

Here we use choose spp=2 to make the difference clear. As we can see, there are fewer noisy
and alias when we use mipmap.

And we can also check the histogram of the results.

w/o Mipmap I
with Mipmap i

af://n65
af://n75

3. Environment Map
Idea

If we warp our scene in a huge sphere, which emit lights from every directions, we can use it to
represent the lighting environment. So basically, we need to stick the environment texture in a
infinite light sphere. And we do importance sampling on the 2D distribution of the environment
map's luminance. It makes sense, since the sun in a environment map will have the major
contribution to a shading point then other light source.

Infinite area light

We add some code to parse infinite area light as envmap . It include a Texture , a scale of
light intensity intensity_scale , a transform matrix, and a 2D distribution
table Distribution2D .

struct ParsedEnvMap

{

Texture texture;
Matrix4x4 light_to_world, world_to_Tlight;
Distribution2D dist_2d;

Real intensity_scale = 1.;

ParsedEnvMap (ParsedImageTexture parsed_ImageTexture, Matrix4x4
light_to_world, Real intensity_scale){};

Vector2 GetUV(Vector3 direction){};

Here is a xml format example

<emitter type="envmap">
<float name="1intensity_scale" value="1"/>
<texture type="bitmap" name="reflectance">
<string name="filename" value="graveyard_pathways_1lk.exr"/>
<float name="uscale" value="1"/>

<float name="vscale" value="1"/>
</texture>
<transform name="toWorld">
<rotate angle="0" x="1"/>
</transform>
</emitter>

Distribution

Here we regard the environment map as a 2D table of luminance, where we want to apply
importance sample based on the luminanceof different (u, v). Here we firstly sample the row (v
axis), and then sample the corresponding value within the row (u axis).

DistributionlD

In the Distribution sfructure, there are two vector: pdf and cdf . Firstly, the construction
function get a list of probablity func , which is the PDF of that variable. Then we accumulate
the PDF to figure out the CDF.

af://n75
af://n76
af://n78
af://n84
af://n86

To inverse transform sample a point given a random variable generator rng , we refurn the
lowwer bound of CDF. Notice that in GetPDF , we do not return the p € [0, 1]. Instead, we
return the originally corresponding value in func . That will make the importance sampling
easier.

struct DistributionlD
{
std::vector<Real> pdf, cdf;
Real funcIntegral;
DistributionlD() = default;
DistributionlD(std: :vector<Real>& func)

{

pdf = func;

cdf.resize(func.size() + 1);
cdf.push_back(0.);

for (int i = 0; i < (int)func.size(); i++)

I
L

cdf[i + 1] = cdf[i] + pdf[i];
ks
funcIntegral = cdf[func.size()];
for (int i = 0; i < (int)func.size(); i++)
{
cdf[i] /= funcIntegral;

1
5

cdf[func.size()] = 1.;
sample(pcg32_state& rng)

Real random_p = next_pcg32_real<Real>(rng);

int index = 0;

index = (int) (std::lower_bound(cdf.begin(), cdf.end(), random_p) -
.begin())-1;

return index;

N
J

Real GetPDF(int index)

{

return pdf[index];

Distribution2D

In the Distribution2D sfructure, we use a DistributionlD : marginal_rows to store the
marginal probability of every row(v axis). And we form a 2D table by a list of DistributionlD :

conditional_v .

First of all, given a 1D vector func and it width and height we push them back to

conditional_v row by row. After that, we get the sum of each row funcIntegral , and put
them info marginal_rows . There the sinTheta is just used to correct the distortion, and
actually will have no effect on the final probability.

To inverse transform sample a 2D point given a random variable generator rng , we will
sample marginal_rows first, fo choose the index of a row(v axis), and then
sample conditional_v[row] tfo sample the proper column(u axis).

struct Distribution2D

is
L

std::shared_ptr<DistributionlD> marginal_rows;

af://n90

std: :vector<std::shared_ptr<DistributionlD>> conditional_v;

int width, height;

Distribution2D(const std::vector<Real>& func, int width, int height)
:width(width), height(htight)

I
L

for(int v = 0; v < height; v++)

{

std::vector<Real> row = { func.begin() + vxwidth, func.begin() +
(v+1)*width-1 };
conditional_v.emplace_back(new DistributionlD(row))
}
std::vector<Real> marginal_func;
for(int v = 0; v < height; v++)
{

marginal_func.push_back(conditional_v[v]->funcIntegral);

}

marginal_rows = std::make_shared<DistributionlD>(marginal_func);

}
Vector2i sample(pcg32_state& rng)

r
1

int row_index = marginal_rows.sample(rng);

return { conditional_v[row_index].sample(rng), row_index};

N
5

Real GetPDF(Vector2i uv)

{

int u = uv[O];
int v = uv[l];
return conditional_v[v]->pdf[u] / marginal_rows->funcIntegral;

PDF, light Direction, and Emission

PDF

We want fo get PDF to appl MC integral in Rendering Equation. So acutally we need to get the
distribution of solid angle. Since = 2mu, ¢ = v on sphere coordinate, we get

_ p(0,9) p(u,v)

sin(0) 2w2sin(0)

p(w)

Actually, here (u,v) € [0, 1]%, but actually our Distribution2D get (u',v') € [width, height],

_ _ oY)
SO p(u’7 ’U) " widthxheight

af://n96
af://n97

ParsedEnvMap& envmap = std::get<ParsedEnvMap>(light);

Vector4 direc_light_4 = envmap.world_to_Tlight * Vector4(normalize(direction),
0.);

Vector3 direc_light = normalize(Vector3(direc_light_4.x, direc_light_4.y,
direc_light_4.z));

Vector2 uv_real = envmap.GetUV(direc_light);

Vector2i uv_int = { (int) (uv_real[0] * (Real)envmap.texture.width),
(int) (uv_real[1l] * (Real)envmap.texture.height) 1};

Real pdf = envmap.dist_2d.GetPDF(uv_int) / envmap.dist_2d.marginal_rows-—
>funcIntegral;

pdf *= (Real)envmap.texture.width * (Real)envmap.texture.height;

Real sin_theta = sin(uv_real[l] * c_PI);

if (sin_theta < 0.)

return 0.;

Real pdf_wo = pdf / (2. * c_PI x c_PI * sin_theta);

PDF_value = pdf_wo;

Direction

Sample on the Distribution2d of the luminance, we get the (u,v) and get the direction in
the light coordinate. Transform it to the world coordinate is necessary.

ParsedEnvMap& envmap = std::get<ParsedEnvMap>(light_random);

Vector2i uv_int = envmap.dist_2d.sample(rng);

Vector2 uv_real = { (Real)uv_int[0] / (Real)envmap.texture.width,
(Real)uv_int[1] / (Real)envmap.texture.height };

Real theta = uv_real[l] * c_PI;

Real phi = uv_real[0] * 2. * c_PI;

Vector3 direc_light = { -cos(phi) * sin(theta),

cos(theta),

sin(phi) * sin(theta) };
Vector4 direc_world_4 = envmap.light_to_world * Vector4(direc_light, 0.);
Vector3 direc_world = normalize(Vector3(direc_world_4.x, direc_world_ 4.y,
direc_world_4.z));

return direc_world;

Emission(based on Mipmap)

Intensity_scale is used to scale the light intensity. Since we are sampling on a infinite

Odir. 5’pomt
e

coordinate and film coordinate.

sphere, we use instead of

to calculate the partial derivative between texture

G_u B odir i ou
or Oz odir

Since the direction d = [—cos(¢)sin(0), —005(9), sin()sin(4)]T, we get

odir

1= ||—|| || = 2msin(6)

Ha"”u—u &
odir

=7mx*x1

We then use it to calculate the footprint and to pick color from corresponding mipmap level.

af://n103
af://n106

Experiments & Result

Here is a beautiful rendering result. From the left to right: Mirror , purple Plastic ,

glass with eta=1.5 ,and cyan blinn_microfacet Wwith roughness=800 . Thisimage is only
lighted by environment map. We can see every sphere with different material get reasonable
lighting, as the sun from the right up corner make more conftribution than other light source,
and the light is highlight result instead of scattered random light points sampled by BRDF
sampling.

And also we take a experiment to find compare the sampling schemes. It is obviously that we
successfully done importance sampling based on the environment radiance.

af://n116

Importance Sampling ¥
Random Sapling 2

4.Final Result

Here is the reference image rendered by Blender. There might be little fransformation between
camera and object in our Torrey renderer.

Below is the gallery of our rendering results.

af://n125

graveyard pathways[[§

autumn

country road ¥

	1. Normal Mapping
	Partial derivatives
	Path differentials
	A simple way inspired from RenderMan

	Shading normal
	Experiments & Result

	2. Mipmapping
	Idea
	Partial derivatives
	Image pyramid
	Bilinear lookup between texels
	Trilinear lookup between level

	Texture
	Experiments & Result

	3. Environment Map
	Idea
	Infinite area light
	Distribution
	Distribution1D
	Distribution2D

	PDF, light Direction, and Emission
	PDF
	Direction
	Emission(based on Mipmap)

	Experiments & Result

	4.Final Result

